Lignocellulosic biomass feedstock transportation alternatives, logistics, equipment configurations, and modeling

نویسندگان

  • Zewei Miao
  • Yogendra Shastri
  • Tony E. Grift
  • Alan C. Hansen
چکیده

Lignocellulosic biomass feedstock transportation bridges biomass production, transformation, and conversion into a complete bioenergy system. Transportation and associated logistics account for a major portion of the total feedstock supply cost and energy consumption, and therefore improvements in transportation can substantially improve the cost-competitiveness of the bioenergy sector as a whole. The biomass form, intended end use, supply and demand locations, and equipment and facility availability further affect the performance of the transportation system. The sustainability of the delivery system thus requires optimized logistic chains, cost-effective transportation alternatives, standardized facility design and equipment confi gurations, effi cient regulations, and environmental impact analysis. These issues have been studied rigorously in the last decade. It is therefore prudent to comprehensively review the existing literature, which can then support systematic design of a feedstock transportation system. The paper reviews the major transportation alternatives and logistics and the implementation of those for various types of energy crops such as energy grasses, short-rotation woody coppices, and agricultural residue. It emphasizes the importance of performance-based equipment confi guration, standard regulations, and rules for calculating transport cost of delivery systems. Finally, the principles, approaches, and further direction of lignocellulosic feedstock transportation modeling are reviewed and analyzed. © 2012 Society of Chemical Industry and John Wiley & Sons, Ltd

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size Reduction and Densification of Lignocellulosic Biomass Feedstock for Biopower, Bioproducts, and Liquid Biofuel Production

Size reduction and densification of lignocellulosic biomass feedstock play a crucial role in the preprocessing and supply of biomass. Size reduction is an operation where the size distribution of biomass particles is adapted to a level determined by its final use. The purpose of densification is to increase the bulk and inherent energy density of the biomass feedstock, allowing optimization of ...

متن کامل

Ethanol from lignocellulosic biomass: a comparison between conversion technologies

The conversion of biomass into biofuels can increase fuel flexibility and reduce the related strategic vulnerability of petroleum based transportation fuel systems. Bioethanol has received considerable attention over the last years as a fuel extender or even neat liquid fuel. Lignocellulosic materials are very attractive substrates for the production of bioethanol because of their low cost and ...

متن کامل

Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels in order to access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver quality-cont...

متن کامل

Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries

Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that ...

متن کامل

Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks.

Developing feedstock-independent biomass pretreatment would be vital to second generation biorefineries that would fully utilize diverse non-food lignocellulosic biomass resources, decrease transportation costs of low energy density feedstock, and conserve natural biodiversity. Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) was applied to a variety of feedsto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012